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Thermoelasticity or force-temperature measurements on elastomeric networks are generally conducted in 
such a way that viscous effects can be assumed to be of negligible importance. Specifically, the deformed 
networks are permitted to relax for relatively long periods of time at high temperatures, and the 
measurements of the elastic force are then carried out at a series of lower temperatures using significantly 
shorter time intervals. These techniques have recently been criticized, with the recommendation that they be 
replaced with a time-dependent 'thermoviscoelasticity' analysis. Re-examination of this general problem 
shows the earlier approach to have a sound theoretical foundation and the time-dependent analysis to be 
misguided and very seriously flawed. 
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INTRODUCTION 

Crosslinked networks of amorphous polymers exert 
retractive forces f that are largely entropic in origin with 
a usually small energy contribution f~ to the force. With 
an elastic equation of state f, can be partitioned between 
intra- and intermolecular interactions. To this end the 
Gaussian theory of elasticity has been widely used 1. This 
theory asigns the ratio fJ f  in its entirety to 
intramolecular interactions stemming from polymer 
chain backbone rotational energies. 

A massive amount of experimental data validates the 
Gaussian theory as being at least semiquantitatively 
reliable 2-1°, and recent theoretical work is moving it 
closer to the quantitative realm lx-13. Traditional 
problems in elasticity have generally been of two kinds: 
theoretical deficiencies of the Gaussian theory, and 
experimental failures to achieve equilibrium. Both 
problems could impact the field of thermoelasticity in 
major ways. 

Since the Gaussian theory is quantitatively inexact, 
how much error is associated with its use to evaluate fJf? 
Short of an exact theory, it might appear that this 
question can be avoided by resort to a phenomenological 
approach involving only experimental quantities: force f, 
length L, volume V and temperature T. Unfortunately, 
this simply is not possible. Only if an experimental 
constraint of constant volume is imposed on the system 
can the phenomenological approach lead to an 
evaluation of fJf; even so, an interpretation of fJf  is not 
supplied. And the condition of constant volume, difficult 
to maintain, is rarely used la in favour of the readily 
accessible condition of constant pressure. But constant- 
pressure experiments require absolutely an equation of 
state even to evaluate f~/f, much less to interpret it. Thus, 
accuracy of the Gaussian theory is an issue that cannot be 
avoided. Studies of swollen x s and unswollen 16 networks, 
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and experiments at constant volume 14, indicate that 
thermoelasticity (force-temperature behaviour) is not 
dramatically sensitive to deficiencies of the Gaussian 
theory. In fact, the only networks in which non-Gaussian 
effectsT.i 7 are unambiguously present are probably those 
having very unusual bimodal distributions specifically 
designed to emphasize limited-chain extensibility 9'1a. 
Also, if such non-Gaussian effects were important, then 
fJ f  should exhibit its largest dependence on elongation 
at high elongations. However, when this ratio varies at 
all, it generally does so at low elongations (because of 
difficulties in measuring rest lengths), and at higher 
elongations only when strain-induced crystallization 
occurs  16'19'2°. It must be admitted, nonetheless, that this 
issue is by no means entirely settled. 

The second problem is the inability of stretched 
networks to reach equilibrium. Slow relaxation can 
continue indefinitely and may not indicate a close 
approach to equilibrium. In fact, such a system could be 
far from equilibrium if its relaxation, or retardation, 
spectrum is skewed towards the region of long relaxation 
times. Are thermoelastic results then seriously affected by 
slow relaxation in the long-time region? Experimental 
results to date indicate that they are not, provided 
relaxation is so slow that reversibility is nearly achieved 
over the time of the experiment. For example, 
thermoelastic results for rubber networks are indifferent 
to an increase in relaxation time from 20min to 8 h 16. 
Also, swollen and unswollen networks fail to display 
problematic time effects, if they exist, which might be 
expected because of the greatly reduced internal viscosity 
of swollen networks is. More specifically, themoelastic 
measurements on networks swollen to volume fractions 
of polymer as low as 0.18 give essentially the same values 
of the temperature coefficient d ln(r2>o/dT of the 
unperturbed mean-square end-to-end distance of the 
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network chains as do measurements on the same 
networks in the totally unswollen state 21. Since the large 
viscoelastic responses generally present in unswollen 
networks are greatly reduced or eliminated at high 
degrees of swelling, this strongly suggests that 
thermoelastic measurements as presently conducted over 
relatively long time intervals are not very sensitive to 
time-dependent effects. Also relevant in this regard is the 
fact that viscosity-temperature data extrapolated to 
infinite dilution generally give values of d ln(r2)o/dT in 
very good agreement with thermoelastic results on the 
same polymer, including those obtained on the undiluted 
networks 2 a,22. 

In two recent publications 2a'2., N. G. McCrum 
dismisses all prior work on thermoelasticity on the 
grounds that viscoelastic effects are extensive and the 
Gaussian theory (invariably used) is incorrect--i.e, on the 
two grounds of traditional concern. In lieu of the 
'irrational' methods of the past, he has proposed a new 
method of thermoviscoelasticity claimed to solve both 
problems. His method eliminates time, permitting even 
rapid experimental relaxation, and removes equations of 
state from the analysis even at constant pressure. In view 
of the importance of these two issues, his claims are 
certainly interesting, but we believe his method of 
thermoviscoelasticity and his analysis are incorrect. 

DISCUSSION OF McCRUM'S CLAIMS 

T hermoviscoe lasticit y 
We consider first the thermoviscoelasticity argu- 

ment 2.. McCrum discusses two small perturbations 
imposed upon a network stressed by an amount a. Prior 
to either perturbation the stressed network is considered 
to have reached equilibrium so that its modulus, or 
compliance, is that of the equilibrium state. Actually, he 
does not require that this initial stressed state be at 
equilibrium, only that changes with time are slight 
throughout the experimental program. His calculations, 
however, refer to an equilibrium state and we will follow 
suit. 

McCrum restricts his considerations to linear 
elasticity; a stress a generates an equilibrium strain 7(T,a) 
at temperature T of amount: 

y(T,a) =J (T)a  (1) 

where J(T) is the equilibrium compliance. A small 
perturbation is imposed on this stretched state by 
suddenly increasing the stress by a small amount Aa. 
When equilibrium is reached the perturbation Aa 
produces a change in strain A7 of amount: 

Ay(T, Aa) = J(T)Aa (2) 

But if sufficient time is not allowed for the perturbation to 
reach equilibrium, viscous retardation will diminish the 
strain increment after a time lapse t by a factor X(t,T), so 
that: 

Ay (t, T, Aa) = Ay(T, Aa)X(t,T) (3) 

o r  

Ay(t, T, Aa) = J(t, T)Aa (4) 

where J(t,T) is written for J(T)X(t,T). 

Next, McCrum considers a small strain increment at 
constant stress generated by a small sudden temperature 
perturbation AT. The network is first brought to 
equilibrium under the stress a at temperature 
T ' = T - A T :  

~(T-AT, a)=J(T-AT)a (5) 

If the temperature is now abruptly changed by an amount 
AT to T, the new equilibrium state is described by (1), and 
the jump in strain, AT(T, aAT), generated by the jump in 
temperature is the difference between (1) and (5): 

Ay(T, aAT ) = y(T,a) - ?(T - AT, a) (6) 

o r  

Ay(T, aAT) = [J(T) -J(T-AT)]a  

which for a small variation AT is: 

A  r, Ar)=J(r)d ldJr(T) A r (7) 

If, however, this temperature-generated perturbation is 
not allowed to reach equilibrium, McCrum states that it 
will be retarded after a time lapse t by the same factor 
X(t,T) as for the isothermal experiment involving a 
perturbation of stress. He argues this must be so because 
creep in both experiments occurs at the same temperature 
T. Therefore, multiplying both sides of (7) by X(t,T), we 
have in complete agreement with McCrum: 

d In J ( T )  
A 7(t,T,aAT) = J(t,Td)----~T'aAT (8) 

The ratio of the strain variations of the two experiments, 
at the same time t, is independent of time and involves 
only equilibrium quantities; (8) divided by (4) is: 

Ay(t,T, aAT) d lnJ (T)  AT 
- - - ~ - - -  (9) 

Ay(t,T, Aa) dT Aa 

which does not involve time in any fashion. 
No doubt McCrum has proffered a simple and unique 

expedient for eliminating the effects of viscoelastic creep 
on thermoelasticity, provided his analysis is correct. We 
do not think it is. It seems strange that a creep factor 
X(t,T) applicable to an isothermal process could also 
apply to a non-isothermal isotonic process, as McCrum 
claims. His argument that the temperature change T'--.T, 
abrupt at t=0 ,  which is all right as a working 
approximation, allows creep when t > 0  only at 
temperature T encourages him to write, in effect, for a 
network initially at temperature T ' =  T - A T  changing 
isotonically to temperature T, a change of strain of: 

Ay(t,T, aAT)=T(T,a)X(t,T)-7(T',a)X(t,T) (10) 

Time t is that elapsed since the inception of AT. But this 
clearly is not in accord with Boltzmann's superposition 
principle, which applies to problems of successive stresses 
and corresponding strains, this one being no exception. 
Consider the first experiment, an isothermal strain 
variation produced by a small change in stress from a' to 
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a. Boltzmann's principle tells us that Ay(t,T, Aa) at time t 
following the stress variation A a = a - t r '  is the strain 
y(t,T,a) a time t after loading the unloaded sample at 
temperature T with the stress a minus the strain y(t ,T,  tr') a 
time t after loading the unloaded sample at temperature T 
with the stress tr'. That is: 

The modulus G(T) equals 1H(T) and F(2) is a general 
function of the deformation ratio 2 (length/initial length). 
McCrum believes the modulus G(T) is the same as that of 
the Gaussian theory, but he leaves F(2) unspecified. From 
(17) he arrives at a result equivalent to, at constant 
pressure p: 

Ay(t,T, Aa) = y(t,T,a) - y(t,T,a') (11) 

The two strains, both referred to the unstretched sample 
length, are simply the strains at T produced by the 
independent stresses a and a' after time t has elapsed from 
the respective independent loadings of the unstressed 
sample. Expanding (11) in a Taylor series to the first 
power of Aa gives: 

Ay(t,T, Aa)=OY(t'T'a)Atr=J(t,T)Aa (12) 
0a 

which is identical to (4), in agreement with McCrum. 
The isotonic process must be treated in an exactly 

similar way. Since the change here is generated by the 
transition T'--*T, we must write: 

Ay(t,T, aAT)=?(t,T,a)-y(t,T',a) (13) 

This strain perturbation is the strain 7(t,T,a) a time t after 
loading the unloaded sample at temperature T with the 
stress a minus the strain y(t,T',a) a time t after loading the 
unloaded sample at temperature T ' = T - A T  with the 
same stress a. Expanding (13) to the first power of AT 
yields: 

A7 (t, T, aA T) = ~ (t, T'a'-A'~ T (14) 
0T 

OL L .  o .fOL'~ / 'dlnJ(T) 
( ~ - ) . , -  pe=jt-ff-f)v,rt--~-- ~ 2fl °) (18) 

where L is the length, and flo is the linear thermal 
expansion coefficient of the undeformed network. 
Actually McCrum writes the derivatives (OL/OT)p,: and 
(OL/Of)v,r as finite ratios AL/AT and AL/Af, respectively. 
A precise delineation of the terms, however, is preferred if 
confusion is to be avoided. Equation (18) contains 
nothing of F(2), which makes it appear to be independent 
of an equation of state. A plot of (OL/OT)v,: against 
f(OL/Of)v, r is linear with a slope determined in part by 
the derivative of J(T). Since McCrum claims G(T) to be 
the Gaussian modulus, (18) is not really independent of 
the Gaussian theory as he states. But this is not the most 
serious error here. 

The really important trouble is bound up with (17), 
which is not a correct general stress--strain 
representation. Actually, it is nothing more than a 
functional representation of the Gaussian theory (insofar 
as only reasonably realistic theories are considered). 
Without doubt, neither the non-Gaussian theory of finite 
deformations 2s nor the Mooney-Rivlin treatment 1°'26 
can be represented by (17). The problem is that equations 
of state cannot in general be factored in this way. The 
correct general factorization includes volume V as well as 
T and 2: 

Because ?(t,T,a)=J(t,T)a, it follows that: 

. . . .  0 In J(t,T) . ... 
Ay(t,T, aAT)=J(t,1) OT a a l  (15) 

which is very different from McCrum's result expressed 
by (8). The ratio of the isotonic to isothermal strain 
variations is not in fact independent of time, but instead: 

OlnJ(t,T) AT 
OT a Aa (16) 

a= G(T,V)F(T,V,2) 

and this leads to something quite different from (18). But 
since factorization is unnecessary anyway, let us start with 
the simplest of all representations of the force f, rather 
than the stress a, as a function of T,V,L: 

f = f(T, V,L) (19) 

We want to know how (OL/OT)p,: is related to (OL/Of)p,r. 
This is directly obtained by differentiating (19) at constant 
pressure p and force J2 

Consequently, the temperature derivative of the 
equilibrium compliance J(T) cannot be obtained in 
general by combining the two experiments in this fashion, 
and this negates completely McCrum's concept of 
thermoviscoelasticity. 

Of 0L Of 0V Of 

Rearranging this to the form similar to that of (18), we 
have: 

Gaussian approximation 
We turn now to McCrum's second claim to have 

eliminated the necessity for an equation of state, 
specifically the Gaussian equation of state, from 
thermoelasticity analysis. Since it is not necessary to 
include time in this discussion, we follow McCrum and 
consider only the equilibrium situation. McCrum starts 
with a general stress-deformation equation: 

a = G(T)F(2) (17) 

0L 0L 0 In f /~ In f'~ 

~of O ln f "~ -] 

where fl = (0 In V/OT)v..r is the volume thermal expansion 
coefficient. The volume V of an elastomer is essentially 
independent of its, length L, so fl can be replaced by 3fl ° 
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and: 

Thus, we have: 

O L \  L o=  - 

lnf ~ In f ,{ (ovL +i l l  3 V -  + L -  (20) 

Equation (20), not (18), is perfectly general. But it is of 
little value without an equation of state to evaluate the 
various partial derivatives, particularly those enclosed by 
braces. It  certainly cannot be assumed that a plot of 
(dL/OT)I,,I vs. f (OL/Of )p , r  is linear; indeed, it is not in the 
general case if equations of state other than the Gaussian 
can be used as a guide, although deviations from linearity 
may not be large. Use of the Gaussian theory leads back 
from (20) in a stepwise fashion to (18) and ultimately to 
Shen's equation 27. McCrum's  result, equation (18), is 
simply an intermediate step in applying the Gaussian 
theory to (20) to obtain Shen's important  Gaussian result. 
Equation (18) is not at all a general equation independent 
of the Gaussian theory as claimed. 

A related point  

Finally, it is useful to include a general comment  on 
systems not at equilibrium. The force is now dependent 
on time, i.e.: 

f = f (T ,V ,L , t )  

Limiting the time interval to a definite value t, dt = O, we 
have: 

o r  

o O l n f  O l n f  
+ i l l  3 V -  + L -  

This equation shows clearly that (1) an equation of state, 
actually a dynamical equation including time, is 
necessary to proceed beyond equation (21), and (2) time 
cannot be removed as a contributing factor unless it is 
great enough to establish equilibrium, in which case the 
dependence on t fades from each term in (21). At times 
short of equilibrium yet still large, we have little or no 
indication that the terms in (21) are seriously affected. It 
seems likely that the terms in square brackets are 
independent of time, or very nearly so. The quantity 
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(0 In f /aT)Lv ,  t, however, should depend upon t, although 
it could be somewhat insensitive unless t is small. 

C O N C L U S I O N S  

We conclude from this analysis that  traditional 
thermoelasticity studies in general are valid, not 
irrational, and not seriously affected by conditions of 
non-equilibrium except in impatiently carried ou t  
experiments where insufficient relaxation might have 
been a factor. Thermoelasticity cannot be analysed 
without an equation of state, the most acceptable and 
useful one to date being the Gaussian. Suggested methods 
of thermoviscodasticity which purport  to eliminate time 
from the analysis are without an acceptably rigorous 
theoretical foundation. 
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